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An improved phenomenological microscopic model is introduced in
the present study and compared to existing models for simutating
molecular vibrational relaxation in rarefied flows. These models arg
employed in statistical particle simulation methods such as the direct
simulation Monte Carlo (DSMC) technique. In the traditional
Borgnakke-Larsen model, collision energies are partitioned among
contributing energy modes as dictated by fractions sampled from
equilibrium distributions. Application of this method to fully excited
continuous energy modes alone, such as in transkation-rotation (T-R)
exchange, promotes the equilibrium state. However, application to
translation-vibration (T-V} exchange is afforded by unrealistically
approximating the quantized distribution as continuous and partially
excited, and employing individual collision “temperatures™ in an
attempt to capture the temperature-dependence of the necessary
distributions. As proven in theoretical and numerical analyses, such an
implementation of the Bergnakke-Larsen method may fail to promote
the equifibrium relaxed state exactly and poses computational dif-
ficulties. The improved technique of the present work iterates between
transiation—rotation and rotation-vibration exchanges which does
promote equilibrium exactly if the model for the latter process is com-
patible with quantized oscillators. This may be achieved by quantizing
the total internal energy of a molecule and dividing the quanta
randomly among the rotational and vibrational energy modes. This
iteration-equipartition model retains computational simplicity and
promotes thermal eguilibrium even when applied to multi-species gas
mixtures of non-degenerate anharmonic quantized oscillators, © 1993
Academic Press, Inc.

INTRODUCTION

Statistical particle simulation methods, such as the direct
simulation Monte Carlo (DSMC) method pioneered by
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Bird [#] and adaptations of this method {2], provide an
appropriale means of simulating rarcficd high-temperature
flows. Such flows may be characterized by thermal and/or
chemicul nonequilibrium resulting from the relative scarcity
of molecular collisions. A flow in thermal nonequilibrium,
where the temperatures associated with the translational,
rotational, and vibrational thermal energy modes are
unequal, will relax toward the equilibrium state via suc-
cessive molecular collisions which promote exchanges of
energy between these modes. The present work addresses
modeling the mechanics of thermally relaxing collisions in
the context of a direct particle simulation.

Particle methods employ phenomenological models to
simulate the motion and interaction of discrete particles in
accordance with the principles of kinetic theory and statisti-
cal mechanics. The dynamics experienced by each of the
many simulated particles which compose the multi-dimen-
sional flowfield are computed, including any changes in
velocity, internal energies, and molecular composition due
to possible reaction for those particles which experience
collisions during a given time step of the simulation.
Thermo-chemical relaxation is simulated by decoupling the
selection and mechanics of inelastic collisions. Although not
discussed in detail here, selection of particles for thermal
[3-7] and reactive [8-10] collisions controls the relaxation
rale and is accomplished by assigning probabilities for cach
type of inleraction to pairs of neighboring particles in the
flowfield, followed by testing each of these probabilities for
acceptance or rejection. Selected pairs of colliding particles
then experience the appropriate energy-exchange mechanics
such as those associated with thermal relaxation addressed
in the present work.

The objective when modeling such mechanics is to
determine an appropriate post-collision state of the energy
modes associated with a given pair of interacting particles.
For thermal relaxation, pre-collision energies & must be
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partitioned into post-collision energies ¢’ in a manner which
promotes equilibrium and satisfies conservation of energy
as follows:

(1)
(2)

£T=£g+£rl +avl 4 €2t Eyas
=g, + &+ & +E2+ 8

Here, &1 is the total thermal energy in the collision, ¢,
represents the relative translational energy between the
colliding particles, and ¢, and ¢, are the rotational and
vibrational energies of each particle in the pair distinguished
by subscripts 1 and 2. Conservation of linear momentum
dictates that the center-of-mass velocity of a colliding pair of
particles must remain unchanged during collision and there-
fore does not contribute to the thermal energy of Eg. (1). In
the context of vibrational relaxation, the models below
specifically address mechanisms involving exchanges of
energy among all thermal modes, known as translation—
rotation—vibration (T-R-V) exchange processes, rather than
vibration—vibration (V-V} exchange processes which
dominate at lower temperatures [11].

Since the characteristic temperatures of translation and
rotation are small relative to flowfield temperatures typical
of atmospheric entry, these energy modes are modeled in the
particle simulation as continuously distributed and fully
excited. However, the characteristic temperature of vibra-
tion is significant in comparison to these flow temperatures
such that the quantum nature of the vibrational energy
mode must be considered. Accurate modeling of the
vibrational mode is important, given its significant impact
upon thermal, reactive, and radiative behavior in high-
temperature gases [127].

Borgnakke and Larsen proposed a model for the
exchange of internal and translational energies during par-
ticle collisions [137]. When applied to collisions involving
the exchange of continuous energies only, this model
promotes relaxation toward thermal equilibrium. As proven
in the present work, however, application of this model to
molecules with a quantized vibrational energy mode is
troublesome and may lead to errors in the energy distribu-
tions pertaining to the relaxed ensemble of particles.

McDonald proposed an aiternative means of partitioning
total thermal energy among the contributing energy modes
which is based vpon a numerically efficient iteration
scheme [2]. First, energy is exchanged strictly between the
rotational and vibrational modes (R-V exchange) in a man-
ner which is compatible with the quantized nature of the
vibrational energy mode. The Borgnakke—Larsen method
above is then employed, exchanging energy strictly between
the continuous translational and rotational modes (T-R
exchange). Repeating these exchanges during individual
collisions promotes relaxation of the ensemble of particles
toward equilibrium among all three thermal energy modes.
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The mechanism employed by McDonald for R-V exchange
is applicable only to the simple harmonic oscillator and fails
to promote detailed balance when applied to general
anharmonic oscillators.

For simulating reactive flows via particle simulation
methods, Haas proposed an alternative mechanism for R-V
exchange based upon equipartition mechanics [14]. As
proven in the present work this exchange mechanism,
in concert with Borgnakke-Larsen mechanics for T-R
exchange of McDonald’s iteration scheme, promotes
detailed balance and thermal equilibrium for simple
harmonic and non-degenerate anharmonic quantized
oscillators.

It is essential to recognize that all of these models are
statistical and phenomenclogical in nature, designed to
simulate the appropriate macroscopic relaxation behavior
via microscopic models. These simple models are not
appropriate for simulating the microscopic kinetics of
relaxation requiring detailed computation of quantum-level
transitions.

PROPERTIES OF MOLECULAR ENERGY MODES

Molecules contain energy in the principle velocity com-
ponents of translational motion, as well as in the internal
energy modes corresponding to molecular rotation and
vibration and the state of orbiting electrons. The contribu-
tion of the electron configuration is neglected in the present
work. Hinshelwood [15] noted that the energy ¢ associated
with one or more continuous energy modes is distributed in
Boltzmann form at equilibrium temperature T as

1 g 21 e\ de
f*(g’d£=r(5/2)(ﬁ) ‘”‘p(_ﬁ)ﬁ'

Here, superscript “*” denotes equilibrium, k is Boltzmann’s
constant, and { is the non-integral number of degrees of
freedom associated with the energy modes. The mean
energy <& associated with the Boltzmann distribution is
related to [ as

(3)

{s)=%kT. )

Accordingly, there are three degrees of freedom for the
translational energy mode ({,=3) and two for the rota-
tional mode ({,=2) of species which dominate planetary
atmospheres including diatomic species (O,, N,, NO, CO)
and linear triatomic species (CQO,). If ¢, represents a4 sum
of mode energies, each distributed as in Eq. (3), the
corresponding distribution of &, will be of Boltzmann form
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as well with { ; degrees of freedom given by the sum of the
individual mode degrees of freedom {.

~ Associated with each pair of colliding particles in the
flowfield is a relative translational speed, g, given by the
magnitude of the difference in particle velocities. The corre-
sponding relative translational energy e, is then given by

(5)

where g =m,m,/(m, +m,) is the reduced mass of the pair.
The number of degrees of freedom (, associated with £
accounts for biasing [9] of colliding particles,

{o=4—4/a, (6)

where a is the exponent of the inverse-power repulsive inter-
molecular potential employed in the collision selection rule
[4] and assumes values in the range between the Maxwell
molecule limit (x =4) and the hard-sphere limit (%= c0).

Models of the Quantized Vibrational Mode

In the present work, vibrational energies ¢, can only
assume discrete energy values distinguished by quantum
levels g, with their relationship defined by some function,
s, = V(q). Likewise, the relationship between quantum level
g and vibrational energy F(g) may be inverted to yield g(V)
when assuming there are no degenerate energy levels. In the
particular case of a simple harmonic oscillator (SHQO) with
characteristic vibrational temperature #,, vibrational
energies are spaced uniformly and are proportional to the
quantum level when measured relative to the ground
state k@, /2,

& lsno = V(g) = gkd,. (7)

For non-degencrate anharmonic oscillators (AHO), the
function V(q) is non-lincar. Regardless, there are two
degrees of freedom associated with the potential and kinetic
vibrational energies, meaning that ¢, has the following
quantized distribution, distinguished by capital “F,” which
exhibits simple exponential behavior at equilibrium [16] as

4D

F*(sv)=exp(—e,,)/ Y expl - V(q)].

g=0

(8)

The denominator simply normalizes the distribution. The
maximum quantum level, g, defines the dissociation limit
for the anharmonic oscillator associated with dissociation
threshold energy D = &6 5. In the SHO model the number of
quantum levels is unbounded (g, = o).
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Effective Number of Vibrational Degrees of Freedom

Employing the continuum relationship of Eq.(4), an
effective number of vibrational degrees of freedom may be
defined in terms of the mean quantized vibrational energy as

(=282
v kT
o[£ () (-0) o0 )]

(9)

When applied to the SHO vibrational model, Eq. (9) leads
to a closed form expression for {, as a function of
temperature [ 16],

8./T

exp(8,/T)—1 (10)

gulSH0=2

The discrete distribution F(e,) in two degrees of freedom is
often approximated by a partially excited continuous dis-
tribution f(e,) de, with {, effective degrees of freedom. Such
an approximation is employed when the Borgnakke—Larsen
model is appiied to the vibrational energy mode.

BORGNAKKE-LARSEN MODEL OF
THERMAL RELAXATION

Borgnakke and Larsen [13] proposed a means of
exchanging energy among continuous thermal modes
during inelastic molecular collisions in a manner which
promotes thermal equilibrium. Here, the total thermal
energy of a given coilision, ¢,, is partitioned among the
various energy modes according to the appropriate equi-
librium distributions. Specifically, the post-collision relative
translational energy ¢, is computed as a fraction # of the
total thermal collision energy,

L [
g, =erF.

(11)

The remaining energy, (1 — %), is divided among the
various internal energy modes in a similar manner. For each
inelastic collision in the flowfield, fraction # is sampled
randomly from its equilibrium distribution, f*{% ), given
by

Ii./2)
(Ce/2) T(Cr—Cg)2)

X FOP N — F )R g,

SHF)dF =+
(12)

The corresponding degrees of freedom are defined as

CTECg+Crl +Cul +£r2+€v23

0,
t={3

(13)

if monatomic;

14
if diatomic; (14)
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where {, and {, are given in Egs. (6) and (9), respectively,
having approximated the distribution of vibrational
energies with a continuous Boltzmann distribution in (,
effective degrees of freedom. Derivation of Eq. (12) is given
in Appendix A. The mean fraction {# > sampled from
distribution f*(# ) is given by the first moment,

t 4
(F)= jo FfHF)aF =*,

r

(15)

Equation (15) indicates that the average fraction of total
collision energy that is composed of relative translational
energy at equilibrium is given simply by the ratio of the
corresponding number of degrees of freedom, and thus by
the ratio of mean energies, (&, »/{&r).

Note that the dependence of /*(#) upon temperature
results only from that associated with the effective vibra-
tional degrees of freedom {, contributing to { . However, to
model rotational relaxation involving exchanges of energy
only between the translational and rotational modes, {,
would not contribute to {; and therefore f*(#) would
be independent of temperature. Consequently, one may
employ the Borgnakke-Larsen model for rotational
relaxation {T-R exchanges only) throughout the flowfield
regardless of local temperatures and the extent of thermal
nenequilibrium. In practice, an adequate sample from the
distribution of Eq. (12) may be tabulated. Sampling from
the distribution then simply requires random selection from
the table.

Application to the Vibrational Mode

To apply the Borgnakke-Larsen method to vibrational
relaxation, the quantized distribution F{s,) must be
approximated by an effective continuous distribution f{(e,)
which is dependent upon local temperatures in the flowfield.
Macroscopic temperatures are iil-defined under general
nonequilibrium conditions and are computationally
expensive to assess. Nonetheless, a microscopic “collision
temperature,” T, may be employed {1] as defined for a
given collision by the relative transiational energy,

e

£
2_5e
ug 7

=

g
Ce

kT=T= . (16)

B3| e

€g=

bl

In this manner, T may be used to compute an effective num-
ber of vibrational degrees of freedom [17], denoted by 7,
via Eq. (10), leading to an effective total number of degrees
of freedom { for use in Eq. (12). Consequently, the distri-
bution which is sampled for the partitioning fraction # in
this manner is not a function of temperature T, but rather is
a function of relative translational energy via 7, and will be
denoted f(# | T).

Unfortunately, application of the Borgnakke-Larsen
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model to vibrational relaxation via collision temperature 7'
does promote equilibrium exactly and is not compatible
with the quantized nature of the energy mode. This is
verified by computing the ensemble-averaged distribution
F(F | T)and its mean {F ) at equilibrium temperature T
and by comparing them to their equilibriuin counterparts
f*(#F) and {# > from Egs. (12) and (15). Distribution
F(#F | T) and mean (& are found by integrating over the
distribution of relative energies as

FEIn = A D H@ndr )

#>=| #1F 1) a7, (1)

where f*(T|T), when employing the definition from
Eq. (16), is of Boltzmann form from Eq. (3) at equilibrium
temperature T with {, degrees of freedom.

Results are presented in Fig, 1 of numerical evaluation of
integral (17) for thermal relaxation involving pairs of simple
harmonic oscillators at various temperatures. The inter-
molecular potential used for coilision selection pertains to
the Maxweil molecule (« = 4). Accurate numerical integra-
tion of Egs. (17) and (18) employed simple trapezoidal
summation over 10,000 points in each domain pertaining to
T and #, respectively.

It is evident that 7(# |T) is a fair approximation of
f*(#) at very low and very high temperatures. However,
the distributions differ more noticeably at intermediate tem-
peratures near T/6,=1.0. The effect of these differences is
apparent in the net temperature-dependence of the resulting
mean fractions {# ) and (&) in Fig. 2. Results are given
for Maxwell molecules (@ =4) and hard-sphere molecules
(@=o0). Note that (& > is higher than (% ) at all tem-
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FIG. 1. Comparison of equilibrium distributions of partitioning

fractions /*(# ) to the distributions resulting from the Borgnakke—Larsen
model f{#| T} pertaining to T-R-V exchanges of energy.
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FIG. 2. Comparison of mean partitioning fractions at equilibrium
{# ) to those resulting from the Borgnakke-Larsen model (F>
pertaining to T-R-V exchanges of energy.

peratures. This indicates that the Borgnakke-Larsen model,
employing a collision temperature for vibrational relaxa-
tion, will place more energy into the relative translational
model upon collision than is needed to maintain equi-
librium. This is because application of this model to the
vibrational mode at equilibrium does not reproduce the
equilibrium  distribution; that is, f(F|T)#f*(F).
Similarly, for dividing the remaining internal energy into
rotational and vibrational components, use of T would lead
to errors in the corresponding mean sampled fraction.

Note that in Fig. 2, curves corresponding to <% > and
(%> should converge to the same point at T/8,=0,
although numerical integration at this limit is unstable. It is
also noteworthy that, when employing the correct analytic
distribution f*(# ), numerical integration leads to the
expected analytic result of Eq. (15).

One may compensate for the inaccuracies of the
Borgnakke-Larsen implementation above by employing
two separate collision temperatures, 7, and T',, pertaining
to each molecule in the collision [18]. Here, T, is defined
from the collection of relative translational energy of the
pair and internal energy of the molecule as

“£3+Cr1+Cvl T

8g-i_‘grl-’-'gul_ 2 le' (19)

A similar empression defines 7',. Since it employs a collec-
tion of energies, Eq. (19) more closely approximates the
exact expression of Eq. (4) than did Eq. (16). More impor-
tantly, however, by employing distinct temperatures and
sampling from separate distributions, the resulting distribu-
tion f{:’f | T} preserves the high and low energy tails of the
desired equilibrium distribution for vibrational energy
pertaining to the gas as a whole.

HAAS, MCDONALD, AND DAGUM

Although this latter implementation of the Borgnakke-
Larsen technique promotes equilibrium, it involves
considerable computational complexity since it requires
iteration to compute 7; and T, for each collision. Such
calculation may be particularly costly when applied to
anharmonic osciliators for which exact expressions of {, as
functions of ¢, and T are of the complex form in Eq. (9).
Furthermore, sampling from distributions f*{%} for both
implementations above requires repeated calculations of the
distribution involving intrinsic functions which is very
inefficient computationally. In non-equilibrium flows at
very high temperatures, where the rate of vibrational
excitation is comparable to the collision frequency, such
calculations would be costly. These limitations may be
circumvented by employing a fixed number of vibrational
degrees of freedom (,, leading to an invariant distribution
J*(# ) which may be tabulated for sampling. However, this
prescribed condition fails to account for variable contribu-
tions of the vibrationai energy mode throughout the
flowfield which is characteristic of its quantum nature,
Furthermore, this approach is not suited to multi-species
gas mixtures which may involve several different charac-
teristic vibrational temperatures 8, and intermolecular
potentials «. Regardless, ail of these implementations
above employ the physically unrealistic assumption of a
continuous (rather than quantized) vibrational mode.

ITERATION ALGORITHM FOR QUANTIZED
THERMAL RELAXATION

McDonald [2] proposed a computationally efficient
iteration scheme for T-R-V thermal relaxation which
decouples T-R exchanges from R-V exchanges. Iterating
between these independent exchanges promotes thorough
mixing of energy among all three thermal modes. The T-R
exchange represents simple rotational relaxation and can be
achieved via the Borgnakke—-Larsen model described above.
Note that under these circumstances, the total number of
degrees of freedom, {;=(,+{, +{,,, is independent of
temperature, and the difficulties associated with using T are
avoided.

Truncation Model for R-V Exchange

The R-V exchange can be modeled without employing
the continuum assumption by sampling quantized vibra-
tional energy e, directly from its discrete equilibrium
distribution, #{s,). However, since both rotational and
vibrational energies are distributed with two degrees of
freedom at equilibrium, McDonald observed for the simple
harmonic oscillator that ¢, may effectively be sampled
directly from the continuous distribution f{e,) in a
quantized manner by simply truncating the pre-colilision
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rotational energy &, down to the nearest vibrational
quantum level ¢. The remaining internal energy is then
placed into rotation as

g
==, 20
7=l (20)
e, =q'kf,, (21)
£ =8, +€&,—¢&,, (22)

where brackets “| |” denote truncation. Note that the
guantum nature of & is preserved.

Proving that this R-V truncation scheme satisfies the
equilibrium constraint, given by f(F | T) = f*(F), simply
requires verification that the distribution of post-coellision
vibrational cnergies F(g,) obtained via the truncation
algorithm matches the equilibrium distribution F*(el).
Employing the Boltzmann distribution f*(¢, ) for rotational
energy with {, =2 degrees of freedom, the distribution F{z))
resulting from trunction of g, is determined as follows:

V(q' +1)
Fe)={ " fre)ds, (23)
Vig)
| i ( & ) d (24)
~ exp| — .
4'k0, P kT
q'kf,
exp ( _kT ) (25)
— F*(z)). (26)

Since F(e, ) matches the equilibrium distribution F*(&)), it
follows that the resulting distribution f{.# | T) would match
the equilibrium distribution f*(# ) as a direct result of the
derivation in Appendix A.

Limitations of the R-V Truncation Algorithm

The truncation algorithm of Egs. {20)-(22) for R-V
exchange promotes vibrational relaxation in a computa-
tionally simple manner which avoids the difficuities
associated with the Borgnakke-Larsen method. However,
this model does not provide for general partitioning of total
internal energy &, without access to nearly equilibrated
pre-collision rotational energies g, in Eq. {20). This problem
is encountered when simulating reactive flows in which the
total post-reaction internal energy ¢;,, must be divided into
& and g,

The truncation algorithm is also restricted to application
only to simple harmonic oscillators since it leads to
nonequilibrium distributions when applied to general
anharmonic oscillators (AHO}. To verify this difficulty,
assume that the vibrational mode is modeled by the Morse
oscillator for which the relationship between quantum levels

int
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g and vibrational energies &, are characterized by the
non-linear relationship,

10,
au|AHo=V(q)=qk6U(1—19— ) (27)
D

From Eq.(23), the distribution of vibrational energies
resulting from application of the truncation algorithm
would be of the form

g, 1o, 186,
R~ (1-ow| -2 (13523524
o D

£y
X exp (— ﬁ‘)

Note that the appearance of ¢’ in the leading term above
means that this distribution does not exhibit the simple
exponential behavior expected at equilibrium. The extent of
this difficulty will be explored below via simulation of
thermally relaxing gas reservoirs.

(28)

EQUIPARTION MODEL FOR QUANTIZED
VIBRATIONAL RELAXATION

In simulating reactive flows, the difficulties associated
with the R-V truncation algorithm are circumvented by
employing an equipartion model [147] adapted from
Baganoff [19]. Based upon the fundamental theory of
statistical mechanics, this model stipulates that ali possible
divisions of total energy into quantized components are
equally probabie [16]. As proven below, this model for R-V
exchange may then be used in concert with the iteration
scheme above, employing Borgnakke—Larsen mechanics for
rotational relaxation (T-R exchange), to promote vibra-
tional relaxation of simple harmonic and non-degenerate
anharmonic quantized oscillators in muiti-species gas
mixtures.

Employing the inverse function g(}) to identify the
maximum quantum level with energy less than or equal
to V, define the quantum level Q associated with the total
internal energy &;,, of a given diatomic molecule as

£int=8r+£us (29)
_ q(sim)a Eim < D;
Q_{‘i'm g2 D (30

Note that ( cannot exceed the maximum level ¢, even if
the internal energy exceeds the dissociation threshold,
ez D.
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Consistent with the equipartition principle, the post-colli-
sion quantum level ¢’ of the vibrational energy of a diatomic
molecule may assume any integer value in the range [0, O]
with equal probability. Employing a uniformly generated
random number R in the range [0, 1), quantum level g’ is
selected as

g=LR-(@+1}] (31)

The vibrational energy associated with quantum level ¢’ is
then subtracted from ¢,,, and placed into rotation,

&, = V{gq'), (32)

(33)

r r
€ =&y — &y

This algorithm for R-V exchange is computationally sim-
ple and is applicable to both thermai and reactive collisions
requiring partioning of internal energy into rotational and
quantized vibrational components. This method is readily
applicable to gas mixtures in which each species has a
unique vibrational character defined by F(g). In addition to
diatomic species, the method is also applicable for each of
the vibrational modes of linear polyatomic molecules such
as CO, which have two rotational degrees of freedom.
Analytic validation of the method is presented in
Appendix B.

APPLICATION OF RELAXATION MODELS

Thermal relaxation of nonequilibrium gas reservoirs may
be simulated to demonstrate the capabilities of the models
described above.

1 1 1 1 1
~ 0.184 L
o
i o144y | Rot. f.(€,) L
= \ — Rot. fe,)
- 0.12 . . L
= I Vib. F'{e)
~ 0.104 L
\
& 0.084 L
3
£ 0.06+ o
k] £,/k0,=25
] 0.04 4 bd g1 I q‘._a.'.l:'-f‘ ,'.,‘-..‘__-j‘,-,,..,.;.l.\,'.:nz.(.'.-_.\‘_‘,, .__‘_-.,_L |
g ' '
g 0.02- L
w
0.00 T T T T T
0 5 10 15 20 25 30
Normalized Energy, e/ké,
FIG. 3. [Initial and relaxed distributions of rotational and vibrational

energies resulting from the equipartition R-V exchange model applied to
the Morse anharmonic oscillator.
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1 1
— Rot. 1*(g,)
& Vib. F(e)

£,/k8,=35
T*9,=8.5

€ /KB, =15
T*/0,=3.8

Normalized Energy Distributions

0 10 20 30 40
Thermal Energy, ke,

FIG. 4. Equilibrium steady-state distributions of rotational and
vibrational energies resulting from the equipartition R-V exchange
model applied to the Morse anharmonic oscillator. Each distribution is
normalized by its value at ¢,=0.

Simulation of R-V Exchange

A constant-volume adiabatic reservoir of diatomic gas,
initialized with no vibrational energy and with molecular
rotational energies uniformiy distributed up to some limit
gy, €Xists in a state of considerable thermal nonequilibrium.
Such reservoirs were simulated with the particle technique
employing the quantum equipartition R-V exchange model
of Egs. (31)-(33) during thermal relaxation to steady state.
The vibrational mode was represented by the Morse
anharmonic oscillator of Eq.(27). Contributions of the
translational mode were not accounted for in these cases in
order to focus upon the R-V exchange process alone.

The initial and final energy distributions are plotted in
Fig. 3 for the initial condition &,/k6, = 25. The steady-state
distributions for rotational and vibrational energies clearly

1 1
— Rot. *(g))
A Vib. F'(g)

Normalized Energy Distributions

1
0 10 20 30 40
Thermal Energy, e/k8,

FIG. 5. Nonequilibrium steady-state distributions of rotational and
vibrational energies resulting from the truncation R-V exchange model
applied to Morse anharmonic oscillators. Each distribution is normalized
by its value at £, =0.
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exhibit the exponential Boltzmann forms expected at equi-
librium, f*(e,) and F*(e,). Repeating such tests for initial
conditions &,/k0,=1[6, 15, 35] lcads to steady-state dis-
tributions plotted in Fig. 4. Equal slopes for each distribu-
tion verify that rotation and vibration are at the same
temperature, indicating relaxation to the expected equi-
librium states. Note the unequal spacing of the vibrational
quantum levels in each figure, characteristic of anharmonic
oscillators.

Repeating these reservoir simulations, but employing the
truncation R-V exchange algorithm, leads to dissimilar
energy distributions in rotation and vibration as presented
in Fig. 5. Note the non-linearity of F(z,) and the inequality
of the slopes of each distribution, consistent with the results
of Eq. (28). However, when applied to the simple harmonic
oscillator for which it was developed, the truncation algo-
rithm indeed promotes equilibrium as demonstrated in
Fig. 6. 1dentical behavior is obtained for the equipartition
method when applied to the SHO model [14].

Simdation of T-R-V Relaxation

To test both the Borgnakke-Larsen and iteration/equi-
partition methods for T-R-V exchanges, several relaxing
reservoirs of O, were simulated with high initial trans-
lational energy but with no initial internal energy. At steady
state following thermal relaxation for simple harmoenic
oscillators, the resulting ratio of mean translational energy
to internal energy, {¢,»/{¢,+¢,», is plotted over a con-
siderable temperature range in Fig. 7a and compared to the
analytic curve represented by the ratio of degrees of
freedom, 3/(2+{,). Results for the Morse anharmonic
oscillator are presented in Fig. 7b. Close agreement verifies
that the iteration/equipartition scheme indeed promotes
thermal equilibrium. In these simulations, only one
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FIG. 6. Egquilibrium steady-state distributions of rotational and
vibraticnal energies resulting from the truncation R-V exchange model
applied to the simple harmonic oscillator. Each distribution is normalized
by its value at ;= 0.
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FIG. 7. Ratio of mean energies in simulated O, reservoirs relaxed by
the Borgnakke-Larsen (7T from Eq.(16)} and iteration/equipartition
methods compared to the equilibrium result given by the ratio of the
number of degrees of freedom pertaining to (a) the simple harmonic
oscillator and (b) the Morse anharmonic oscillator.

iteration (R-V/T-R) was employed per collision. Minor
discrepancies result from statistical sensitivity inherent to
the particle simulation. The Borgnakke-Larsen method,
employing collision temperatures 7 defined from Eq. (16),
clearly does not promote the correct energy ratios, leading
to errors as high as 5.7% and 11.3 % for the SHO and AHO
models, respectively. This is consistent with the analytic
predictions from Figs. 1 and 2. Maxwell molecules (¢ =4)
were employed for all cases.

TABLET

Comparison of Computational Operation Counts per Method?

Simple Borgnakke Borgnakke Iteration
operation Larsen 1° Larsen 2¢ equipartition
+, — 22 32 20
x 26 30 20
= 4 14 0
Totals 52 74 40
Complex
operation
Generate R 10 10 6
Exp 10 14 0
Ln 8 8 0
Totals 28 32 6

¢ Assumes two jterations {for sampling or exchange) in each technigue
when applied bimolecular collisions of diatomic simple harmonic
oscillators.

® Computes T from Eq. (16).

¢ Computes Tl and 7'2 in three iterations from Eq. (19).
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Comparison of Computational Efficiency

In computing the relaxation cases above, significant
computational efficiency was achieved with the iteration/
equiparition method in comparison to the Borgnakke-
Larsen method. While computational effort associated with
any given method is greatly dependent upon the specific
algorithm, program structure, and computer architecture
employed, meaningful comparison can be made by simply
counting the number and type of computer operations
required of each method as demonstrated in Table I. Note
that simple operations including addition, subtraction,
multiplication, and division of floating-point numbers
require far fewer computer clock cycles to complete than
complex operations including the exponential and natural
logarithm functions. Consequently, operation counts for
each type are independently summarized in the table. For
the iterative sequences inherent to each method it was
assumed that, on average, two iterations were required.
Table I clearly demonstrates that the iteration/equipartition
method represents a significant reduction in required
computational effort in comparison to either of the
Borgnakke-Larsen methods in modeling vibrational
relaxation.

CONCLUDING REMARKS

Phenomenological models are applied at the microscopic
scale in statistical particle methods to simulate the macro-
scopic thermal relaxation associated with translation-
rotation-vibration (T-R-V) exchanges of energy. The
Borgnakke-Larsen method for exchanging energies among
continuous thermal energy modes is effective in modeling
rotational relaxation. Application to vibrational relaxation
requires that the discrete distribution associated with quan-
tized vibrational oscillators be approximated unrealistically
by an effective continuous distribution. The method then
requires an estimate of temperature which is ill-defined at
the microscopic scale and poses computational difficulties
to implement. When an effective “collision temperature” T
is defined from the relative translational energy of colliding
particles, the resulting distributions fail to promote equi-
librium partitioning of post-collision energies. Computing 7
for each molecule independently from its relative and inter-
nal energies would improve significantly upon the accuracy
of the method but would involve additional calculation,
particularly for anharmonic oscillators. Furthermore, sam-
pling from these distributions poses considerable additional
computational burden. Employing an invariant tabulated
distribution avoids these difficulties but is not well suited to
multi-species gas mixtures and fails to capture the dynamic
energy contributions which characterize the quantized
vibrational mode.
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A simple iteration method developed by McDonald
decouples T-R and R-V exchanges of thermal energy. The
T-R exchange associated with rotational relaxation is effec-
tively modeled with the Borgnakke-Larsen method since
the distributions involved are continuous and independent
of flowfield temperature. As an alternative to the limited
truncation model for R-V exchange, the fundamentals of
equipartition may be employed to modei the R-V exchange
of continuous rotational and quantized vibrational energies
in a manner which promotes the correct equilibrium parti-
tioning of post-collision energies. Here, the total internal
energy is quantized and randomly divided into post-colli-
sion quanta for cach mode. These techniques circumvent the
difficulties associated with sampling from temperature-
dependent distributions and account realistically for the
quantum nature of the vibrational energy mode. Relaxation
rates are controlled with selection probability functions
[5-7,9]. As verificd both analytically and numerically, the
iteration/equipartition method maintains and promotes
exact equilibrium for vibrational relaxation involving
simple harmonic or non-degenerate anharmonic quantized
oscillators in a computationally efficient manner.

APPENDIX A: DERIVATION OF THE
BORGNAKKE-LARSEN DISTRIBUTION

Since it is cast in an unusual form, the distribution f*(#)
as employed in the Borgnakke-Larsen method of parti-
tioning post-collision thermal energy from Eqs. (11)-(12}is
derived here. Defining normalized energies E, =¢,/kT and
Er=¢e;/kT, each distributed in Boltzmann form with {, and
{ r degrees of freedom, respectively, the distribution f*(.%)
may be found from the joint distribution,

THEg, Er)dE, dEr= f*(E,) f*(Er— E}dE dE,, (34)
Bl YE, — E, )62
T TG T = L02)
x e~*7 dE, dE. (35)

Employing a change of variables from the definition of #,

E,=E & =dE,~ E,d?, (36)
leads to
Flal2— 1(1 _ 37)((1"“(;)/2— 1
X F. E,)dF dE, =
e T IV (Y,
x E¥? Ve ErdF dE,.  (37)

The distribution f*(#), from which energy partition frac-
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tions % are sampled in the Borgnakke—Larsen method, is
then found by integrating over E,

f*(%dﬁ:jm_nf*(ﬁ, F,)dE, dF, (38)
IR
T2 T L= g)2)
« Fll2=\(] — F)er=2=1 4gF  (39)

APPENDIX B: VERIFICATION OF EQUIPARTITION
MODEL AT EQUILIBRIUM

As proven for the simple harmonic oscillator [14], the
equipartition algorithm maintains equilibrium distribu-
tions, F*(z,) and f*(g,). A similar proof for general
oscillators, presented here, employs normalized energies for
rotation {r =¢,/kT), vibration (v = ¢,/kT), and dissociation
(2 =D/kT=v(qy)), where v(g)= V(g)/kT is the nor-
malized energy associated with quantum level g. Similarly,
g(v) represents the maximum quantum level associated with
some normalized energy value v. The joint distribution of
statistically independent energies r and v is given by the
product

[*(r, v) dr = F*(o} f*(r) dr. (40)

Defining normalized internal energy, E=r+v and
employing the corresponding change of variables, dr = dE,
leads to the joint distribution of statistically dependent
energies v and &:

SE, v)dE=F*({v) f*(E—v)dE,
~e g TESY R

~e FdE. (41)

The distribution f(E} is found by summing over all
vibrational quantum energy levels ¢ in the range [0, @7,

fHEVIE= i f(E, v} dE,

g=0

=(Q+1)e “dE, (42)

where @ is given in Eq. {30). Consistent with the equiparti-
tion algorithm, the distribution of quanta () associated
with energy E can be found by integrating the distribution
of continuous internal energy f*(E) over the quantum
interval {Q, @+ 1],
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FXQ)= [ f*(E) dE,

yWiQ+ 1) }
j (0 +1) et dE,
v{Q)

for E<2, Q0 <qp,
jm(40+|)e‘EdE, for E29 0=qp,
@
(43)
_ {(Q+1)[e“‘93—e—vm+nl 0<an
(qD+1)e*9, qup-

Consistent with equipartition, the outcome quantum
level ¢’ is equally probable among the Q + 1 possibilities
[0, 1,2,.., @], leading to a conditional distribution of ¢’
which is uniform,

1

Fg| Q=57

(45)

The joint distribution F(g’, @) is then given by the product

Fig', Q)= Flg' |Q) F*(Q) (46)
e*"(Q)_E—‘(Q+1)’ Q<QD&
“{e olu W

Noting the definition & =v(qp), the final distribution of
post-collision vibrational quanta ¢’ is found by summing
over all possible total internal energy quantum leveis { in
the range [¢', ¢, ],

ap

Flg)= ) Flg, Q) (48)
o=9q
qp—1
=F(q'|go) F*(gp)+ 3 Fl¢'|Q)F*Q), (49)
O=g
4p—1 ’
=e 74 T [en@—eer ), (50)
o=gq'
=e—v(qu)+[E—vw')__e—v{q‘+l)]
+ e @D L (31)
+£efv(qp—l}_e*"(‘m)]’
—e—a) (52)

The final expression for F(g') retains the exponential
Boltzmann form associated with the vibrational energy
distribution at equilibrium, F*{g'), indicating that the
equipartition model preserves the equilibrium state when
applied to generai oscillators. Note that the desired result,
F(q'y= F*(q'), was only achieved because the 0 + 1 term in
Eq. (44) was cancelled by the particular expression for
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F{q'| Q) in Eq. (45). This expression applies only to the
equipartition principle; an algorithm based upon a different
principle would fail to yield the form in Eq. (45) and,
therefore, fail to promote equilibrium.
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